FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism.
نویسندگان
چکیده
The first neural crest cells to emigrate from the neural tube are specified as neurons and glial cells and are subsequently followed by melanocytes of the skin. We wished to understand how this fate switch is controlled. The transcriptional repressor FOXD3 is expressed exclusively in the neural/glial precursors and MITF is expressed only in melanoblasts. Moreover, FOXD3 represses melanogenesis. Here we show that avian MITF expression begins very early during melanoblast migration and that loss of MITF in melanoblasts causes them to transdifferentiate to a glial phenotype. Ectopic expression of FOXD3 represses MITF in cultured neural crest cells and in B16-F10 melanoma cells. We also show that FOXD3 does not bind directly to the MITF promoter, but instead interacts with the transcriptional activator PAX3 to prevent the binding of PAX3 to the MITF promoter. Overexpression of PAX3 is sufficient to rescue MITF expression from FOXD3-mediated repression. We conclude that FOXD3 controls the lineage choice between neural/glial and pigment cells by repressing MITF during the early phase of neural crest migration.
منابع مشابه
Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest.
Pigment cells of the zebrafish, Danio rerio, offer an exceptionally tractable system for studying the genetic and cellular bases of cell fate decisions. In the zebrafish, neural crest cells generate three types of pigment cells during embryogenesis: yellow xanthophores, iridescent iridophores and black melanophores. In this study, we present evidence for a model whereby melanophores and iridoph...
متن کاملFoxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf.
We describe a mechanistic model whereby Foxd3, a forkhead transcription factor, prevents neural crest-derived precursors from acquiring a melanophore fate. Foxd3 regulates this fate choice by repressing the mitfa promoter in a subset of neural crest cells. mitfa is only expressed in a Foxd3-negative subset of neural crest cells, and foxd3 mutants show an increase in the spatial domain of mitfa ...
متن کاملNeural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3.
Skin melanocytes arise from two sources: either directly from neural crest progenitors or indirectly from neural crest-derived Schwann cell precursors after colonization of peripheral nerves. The relationship between these two melanocyte populations and the factors controlling their specification remains poorly understood. Direct lineage tracing reveals that neural crest and Schwann cell progen...
متن کاملAngiogenesis, Metastasis, and the Cellular Microenvironment FOXD3 Regulates Migration Properties and Rnd3 Expression in Melanoma Cells
Forkhead transcription factor, Foxd3, plays a critical role during development by controlling the lineage specification of neural crest cells. Notably, Foxd3 is highly expressed during the wave of neural crest cell migration that forms peripheral neurons and glial cells but is downregulated prior to migration of cells that give rise to the melanocytic lineage. Melanoma is the deadliest form of ...
متن کاملFOXD3 regulates migration properties and Rnd3 expression in melanoma cells.
Forkhead transcription factor, Foxd3, plays a critical role during development by controlling the lineage specification of neural crest cells. Notably, Foxd3 is highly expressed during the wave of neural crest cell migration that forms peripheral neurons and glial cells but is downregulated prior to migration of cells that give rise to the melanocytic lineage. Melanoma is the deadliest form of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 136 11 شماره
صفحات -
تاریخ انتشار 2009